By Topic

Effect of magnetic bead agglomeration on cytomagnetometric measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moller, W. ; Sch. of Sci. & Eng., Tokyo Denki Univ., Chiba, Japan ; Nemoto, I. ; Heyder, J.

Magnetic twisting cytometry (MTC) is a novel tool to measure cytoskeleton-associated cell functions by the use of ferromagnetic microbeads. Magnetic beads are either incorporated by living cells by phagocytic processes or attached to integrin receptors to the cell membrane. The magnetic beads are magnetized and aligned in a strong magnetic field pulse. The application of twisting forces allows to investigate mechanical properties (stiffness, viscoelasticity) of the cytoskeleton of living cells by analyzing the magnetic cell field. Incorporated magnetic beads undergo intracellular transport processes, which result in a loss of particle alignment and in a decay of the remanent magnetic cell field. This process, called relaxation, depends on the mechanical cytoskeletal properties and can directly visualize the intracellular energy of cellular transport processes. The preparation of spherical monodisperse ferromagnetic beads made it possible to understand the above-described processes using mathematical models. Experimental conditions with many magnetic particles per cell enhances the formation of aggregates because of the attractive forces between magnetic spheres, resulting in a change of magnetic properties and of hydrodynamic behavior. Due to mutual magnetization, the remanent magnetic moment of an aggregate is stronger compared to the same number of single particles. This implies a higher cell field. Additionally the relaxation is retarded because of the change in shape factor and in volume, which also implies a faulty estimation of intracellular transport energy. Magnetic particle twisting is less influenced. In summary, valuable cytomagnetometric measurements have to be done with less than one particle per macrophage to ensure low probability of multiple particles per cell.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:2 ,  Issue: 4 )