By Topic

Methods for automatic microarray image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Katzer ; Fac. of Technol., Bielefeld Univ., Germany ; F. Kummert ; G. Sagerer

This paper describes image processing methods for automatic spotted microarray image analysis. Automatic gridding is important to achieve constant data quality and is, therefore, especially interesting for large-scale experiments as well as for integration of microarray expression data from different sources. We propose a Markov random field (MRF) based approach to high-level grid segmentation, which is robust to common problems encountered with array images and does not require calibration. We also propose an active contour method for single-spot segmentation. Active contour models describe objects in images by properties of their boundaries. Both MRFs and active contour models have been used in various other computer vision applications. The traditional active contour model must be generalized for successful application to microarray spot segmentation. Our active contour model is employed for spot detection in the MRF score functions as well as for spot signal segmentation in quantitative array image analysis. An evaluation using several image series from different sources shows the robustness of our methods.

Published in:

IEEE Transactions on NanoBioscience  (Volume:2 ,  Issue: 4 )