Cart (Loading....) | Create Account
Close category search window
 

Support vector method for robust ARMA system identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rojo-Alvarez, J.L. ; Dept. of Signal Theor. & Commun., Univ. Carlos III de Madrid, Spain ; Martinez-Ramon, M. ; de Prado-Cumplido, M. ; Artes-Rodriguez, A.
more authors

This paper presents a new approach to auto-regressive and moving average (ARMA) modeling based on the support vector method (SVM) for identification applications. A statistical analysis of the characteristics of the proposed method is carried out. An analytical relationship between residuals and SVM-ARMA coefficients allows the linking of the fundamentals of SVM with several classical system identification methods. Additionally, the effect of outliers can be cancelled. Application examples show the performance of SVM-ARMA algorithm when it is compared with other system identification methods.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.