By Topic

Analysis of stability and performance of adaptation algorithms with time-invariant gains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahlen, A. ; Dept. of Signals & Syst., Uppsala Univ., Sweden ; Lindbom, Lars ; Sternad, M.

Adaptation laws that track parameters of linear regression models are investigated. The considered class of algorithms apply linear time-invariant filtering on the instantaneous gradient vector and includes least mean squares (LMS) as its simplest member. The asymptotic stability and steady-state tracking performance for prediction and smoothing estimators is analyzed for parameter variations described by stochastic processes with time-invariant statistics. The analysis is based on a novel technique that decomposes the inherent feedback of adaptation algorithms into one time-invariant loop and one time-varying loop. The impact of the time-varying feedback on the tracking error covariance can be neglected under certain conditions, and the performance analysis then becomes straightforward. Performance analysis in the presence of a non-negligible time-varying feedback is performed for algorithms that use scalar measurements. Convergence in mean square error (MSE) and the MSE tracking performance is investigated, assuming independent consecutive regression vectors. Closed-form expressions for the tracking MSE are thereafter derived without this independence assumption for a subclass of algorithms applied to finite impulse response (FIR) models with white inputs. This class includes Wiener LMS adaptation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:52 ,  Issue: 1 )