By Topic

On-chip stochastic communication [SoC applications]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dumitras, T. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Marculescu, R.

As CMOS technology scales down into the deep-submicron (DSM) domain, the costs of design and verification for systems-on-chip (SoCs) are rapidly increasing due to the inefficiency of traditional CAD tools. Relaxing the requirement of 100% correctness for devices and interconnects drastically reduces the costs of design but, at the same time, requires that SoCs be designed with some system-level fault-tolerance. In this paper, we introduce a new communication paradigm for SoCs, namely stochastic communication. The newly proposed scheme not only separates communication from computation, but also provides the required built-in fault-tolerance to DSM failures, is scalable and cheap to implement. For a generic tile-based architecture, we show how a ubiquitous multimedia application (an MP3 encoder) can be implemented using stochastic communication in an efficient and robust manner. More precisely, up to 70% data upsets, 80% packet drops because of buffer overflow, and severe levels of synchronization failures can be tolerated while maintaining a low latency.

Published in:

Design, Automation and Test in Europe Conference and Exhibition, 2003

Date of Conference: