By Topic

Parallel algorithm for mining fuzzy association rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Baowen Xu ; Dept. of Comput. Sci. & Eng., Southeast Univ. of Nanjing, China ; Jianjiang Lu ; Yingzhou Zhang ; Lei Xu
more authors

The principle and steps of the algorithm for mining fuzzy association rules is studied, and the parallel algorithm for mining fuzzy association rules is presented. In this parallel mining algorithm, quantitative attributes are partitioned into several fuzzy sets by the parallel fuzzy c-means algorithm, and fuzzy sets are applied to soften the partition boundary of the attributes. Then, the parallel algorithm for mining Boolean association rules is improved to discover frequent fuzzy attributes. Last, the fuzzy association rules with at least fuzzy confidence are generated on all processors. The parallel mining algorithm is implemented on the distributed linked PC/workstation. The experiment results show that the parallel mining algorithm has fine scaleup, sizeup and speedup.

Published in:

Cyberworlds, 2003. Proceedings. 2003 International Conference on

Date of Conference:

3-5 Dec. 2003