By Topic

Anticipating synchronization based on optical injection-locking in chaotic semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kusumoto, K. ; Fac. of Eng., Shizuoka Univ., Hamamatsu, Japan ; Ohtsubo, J.

Numerical studies for anticipating chaos synchronization in semiconductor lasers with optical feedback are presented. Anticipating chaos synchronization in a delay-differential system is believed to occur when all chaos parameters between the two systems are perfectly coincident with each other. However, we find new schemes of anticipating chaos synchronization when the parameters between the two systems have mismatches. Under these conditions, the time lag between the two laser outputs is equal to that of anticipating chaos synchronization, but the physical origin of the phenomenon comes from optical injection-locking or amplification in laser systems. We show the evidence of such chaotic synchronization using trajectories in the phase space of the phase difference and the carrier density in the laser oscillations.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:39 ,  Issue: 12 )