Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

TLC: transmission line caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beckmann, B.M. ; Dept. of Comput. Sci., Wisconsin Univ., Madison, WI, USA ; Wood, D.A.

It is widely accepted that the disproportionate scaling of transistor and conventional on-chip interconnect performance presents a major barrier to future high performance systems. Previous research has focused on wire-centric designs that use parallelism, locality, and on-chip wiring bandwidth to compensate for long wire latency. An alternative approach to this problem is to exploit newly-emerging on-chip transmission line technology to reduce communication latency. Compared to conventional RC wires, transmission lines can reduce delay by up to a factor of 30 for global wires, while eliminating the need for repeaters. However, this latency reduction comes at the cost of a comparable reduction in bandwidth. In this paper, we investigate using transmission lines to access large level-2 on-chip caches. We propose a family of transmission line cache (TLC) designs that represent different points in the latency/bandwidth spectrum. Compared to the recently-proposed dynamic non-uniform cache architecture (DNUCA) design, the base TLC design reduces the required cache area by 18% and reduces the interconnection network's dynamic power consumption by an average of 61%. The optimized TLC designs attain similar performance using fewer transmission lines but with some additional complexity. Simulation results using full-system simulation show that TLC provides more consistent performance than the DNUCA design across a wide variety of workloads. TLC caches are logically simpler than DNUCA designs, but require greater circuit and manufacturing complexity.

Published in:

Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on

Date of Conference:

3-5 Dec. 2003