Cart (Loading....) | Create Account
Close category search window

Parallel multipliers based on special irreducible pentanomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rodriguez-Henriguez, F. ; Depto. de Ingenieria Electrica, CINVESTAV-IPN, Mexico City, Mexico ; Koç, C.K.

The state-of-the-art Galois field GF(2m) multipliers offer advantageous space and time complexities when the field is generated by so special irreducible polynomial. To date, the best complexity results have been obtained when the irreducible polynomial is either a trinomial or an equally spaced polynomial (ESP). Unfortunately, there exist only a few irreducible ESPs in the range of interest for most of the applications, e.g., error-correcting codes, computer algebra, and elliptic curve cryptography. Furthermore, it is not always possible to find an irreducible trinomial of degree m in this range. For those cases where neither an irreducible trinomial nor an irreducible ESP exists, the use of irreducible pentanomials has been suggested. Irreducible pentanomials are abundant, and there are several eligible candidates for a given m. We promote the use of two special types of irreducible pentanomials. We propose new Mastrovito and dual basis multiplier architectures based on these special irreducible pentanomials and give rigorous analyses of their space and time complexity.

Published in:

Computers, IEEE Transactions on  (Volume:52 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.