By Topic

Comparison of Bayesian networks and data mining for coverage directed verification category simulation-based verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Braun, M. ; STZ Softwaretechnik, Esslingen, Germany ; Rosenstiel, W. ; Schubert, K.-D.

Today directed random simulation is one of the most commonly used verification techniques. Because this technique in no proof of correctness, it is important to test the design as complete as possible. But this is a hard to reach goal, that needs a lot of computing power and much human interaction. There has been a proposal for using Bayesian networks to implement an automatic feedback loop (Shai Fine et al, 40th Design Automation Conference, 2003). In addition, this paper introduces another implementation of an automatic feedback loop using data mining techniques. Both approaches are applied to the same design and the results are compared.

Published in:

High-Level Design Validation and Test Workshop, 2003. Eighth IEEE International

Date of Conference:

12-14 Nov. 2003