By Topic

Exploitation of unlabeled sequences in hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inoue, M. ; Graduate Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Japan ; Ueda, N.

This paper presents a method for effectively using unlabeled sequential data in the learning of hidden Markov models (HMMs). With the conventional approach, class labels for unlabeled data are assigned deterministically by HMMs learned from labeled data. Such labeling often becomes unreliable when the number of labeled data is small. We propose an extended Baum-Welch (EBW) algorithm in which the labeling is undertaken probabilistically and iteratively so that the labeled and unlabeled data likelihoods are improved. Unlike the conventional approach, the EBW algorithm guarantees convergence to a local maximum of the likelihood. Experimental results on gesture data and speech data show that when labeled training data are scarce, by using unlabeled data, the EBW algorithm improves the classification performance of HMMs more robustly than the conventional naive labeling (NL) approach.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 12 )