Cart (Loading....) | Create Account
Close category search window

Optimal cluster preserving embedding of nonmetric proximity data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roth, V. ; Dept. of Comput. Sci., Bonn Univ., Germany ; Laub, J. ; Kawanabe, M. ; Buhmann, J.M.

For several major applications of data analysis, objects are often not represented as feature vectors in a vector space, but rather by a matrix gathering pairwise proximities. Such pairwise data often violates metricity and, therefore, cannot be naturally embedded in a vector space. Concerning the problem of unsupervised structure detection or clustering, in this paper, a new embedding method for pairwise data into Euclidean vector spaces is introduced. We show that all clustering methods, which are invariant under additive shifts of the pairwise proximities, can be reformulated as grouping problems in Euclidian spaces. The most prominent property of this constant shift embedding framework is the complete preservation of the cluster structure in the embedding space. Restating pairwise clustering problems in vector spaces has several important consequences, such as the statistical description of the clusters by way of cluster prototypes, the generic extension of the grouping procedure to a discriminative prediction rule, and the applicability of standard preprocessing methods like denoising or dimensionality reduction.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.