By Topic

Personal identification based on iris texture analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li Ma ; Inst. of Autom., Chinese Acad. of Sci., Beijing, China ; Tieniu Tan ; Yunhong Wang ; Dexin Zhang

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention over the past decade. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This paper focuses on the last issue and describes a new scheme for iris recognition from an image sequence. We first assess the quality of each image in the input sequence and select a clear iris image from such a sequence for subsequent recognition. A bank of spatial filters, whose kernels are suitable for iris recognition, is then used to capture local characteristics of the iris so as to produce discriminating texture features. Experimental results show that the proposed method has an encouraging performance. In particular, a comparative study of existing methods for iris recognition is conducted on an iris image database including 2,255 sequences from 213 subjects. Conclusions based on such a comparison using a nonparametric statistical method (the bootstrap) provide useful information for further research.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:25 ,  Issue: 12 )