Cart (Loading....) | Create Account
Close category search window
 

Study of optical pulses-fiber gratings interaction by means of joint time-frequency signal representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azana, J. ; Energie, Materiaux et Telecommun. (INRS-EMT), Inst. Nat. de la Recherche Scientifique, Montreal, Que., Canada ; Muriel, M.A.

In this paper, we carry out a systematic study on the interaction between ultrashort optical pulses and fiber Bragg grating structures operating in the linear regime. Our study is based on the joint time-frequency representation (spectrogram) of the reflection impulse response from the grating structures under analysis. By means of such a representation we get to visualize in a single image all the relevant information concerning the optical and dispersive behavior of the grating structures and more importantly, we obtain information on the pulse-grating interaction process, which otherwise is not accessible from any other method. Here, we analyze uniform and nonuniform fiber Bragg gratings. The effects of the apodization of the coupling coefficient and chirp of the grating period on the macroscopic optical properties of the considered gratings are investigated. Furthermore, we extend our analysis to more complicated in-fiber grating structures such as concatenated gratings, Fabry-Perot-like grating structures, and superimposed gratings. The results of our study indicate that the time-frequency methods constitute a powerful tool for the analysis and design of fiber Bragg grating structures.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 11 )

Date of Publication:

Nov. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.