By Topic

Optically assisted Internet routing using arrays of novel dynamically reconfigurable FBG-based correlators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Hauer, M.C. ; Dept. of Electr. Eng.Syst., Univ. of Southern California, Los Angeles, CA, USA ; McGeehan, J.E. ; Kumar, S. ; Touch, J.D.
more authors

As routing tables in core Internet routers grow to exceed 100,000 entries, it is becoming essential to develop methods to reduce the lookup time required to forward packets toward their destinations. In this paper, we employ a bank of novel thermally tuned fiber-Bragg-grating-based optical correlators to construct an "optical bypass" to accelerate conventional electronic Internet routers. The correlators are configured as a routing table cache that can quickly determine the destination port for a fraction of the incoming traffic by examining only a subset of the bits in an IP packet's 32-bit destination address. We also demonstrate a novel multiwavelength correlator based on fiber Bragg grating that can simultaneously recognize the header bits on multiple wavelengths for use in wavelength-division-multiplexed (WDM) systems. Using the optical bypass, routing table lookup times are reduced by an order of magnitude from microseconds to nanoseconds and are limited only by the speed of the optical switch.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 11 )