Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Interactive visualization and navigation in large data collections using the hyperbolic space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Walter, J. ; Dept. of Comput. Sci., Bielefeld Univ., Germany ; Ontrup, J. ; Wessling, D. ; Ritter, H.

We propose the combination of two recently introduced methods for the interactive visual data mining of large collections of data. Both hyperbolic multidimensional scaling (HMDS) and hyperbolic self-organizing maps (HSOM) employ the extraordinary advantages of the hyperbolic plane (H2): (i) the underlying space grows exponentially with its radius around each point deal for embedding high-dimensional (or hierarchical) data; (ii) the Poincare model of the IH2 exhibits a fish-eye perspective with a focus area and a context preserving surrounding; (in) the mouse binding of focus-transfer allows intuitive interactive navigation. The HMDS approach extends multidimensional scaling and generates a spatial embedding of the data representing their dissimilarity structure as faithfully as possible. It is very suitable for interactive browsing of data object collections, but calls for batch precomputation for larger collection sizes. The HSOM is an extension of Kohonen's self-organizing map and generates a partitioning of the data collection assigned to an IH2 tessellating grid. While the algorithm's complexity is linear in the collection size, the data browsing is rigidly bound to the underlying grid. By integrating the two approaches, we gain the synergetic effect of adding advantages of both. And the hybrid architecture uses consistently the IH2 visualization and navigation concept. We present the successfully application to a text mining example involving the Reuters-21578 text corpus.

Published in:

Data Mining, 2003. ICDM 2003. Third IEEE International Conference on

Date of Conference:

19-22 Nov. 2003