By Topic

TECNO-STREAMS: tracking evolving clusters in noisy data streams with a scalable immune system learning model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nasraoui, O. ; Dept. of Electr. & Comput. Eng., The Univ. of Memphis, TN, USA ; Uribe, C.C. ; Coronel, C.R. ; Gonzalez, F.

Artificial immune system (AIS) models hold many promises in the field of unsupervised learning. However, existing models are not scalable, which makes them of limited use in data mining. We propose a new AIS based clustering approach (TECNO-STREAMS) that addresses the weaknesses of current AIS models. Compared to existing AIS based techniques, our approach exhibits superior learning abilities, while at the same time, requiring low memory and computational costs. Like the natural immune system, the strongest advantage of immune based learning compared to other approaches is expected to be its ease of adaptation to the dynamic environment that characterizes several applications, particularly in mining data streams. We illustrate the ability of the proposed approach in detecting clusters in noisy data sets, and in mining evolving user profiles from Web clickstream data in a single pass. TECNO-STREAMS adheres to all the requirements of clustering data streams: compactness of representation, fast incremental processing of new data points, and clear and fast identification of outliers.

Published in:

Data Mining, 2003. ICDM 2003. Third IEEE International Conference on

Date of Conference:

19-22 Nov. 2003