By Topic

Battery modeling for energy aware system design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Advances in battery technology have not kept pace with rapidly growing energy demands. Most laptops, handheld PCs, and cell phones use batteries that take anywhere from 1.5 to 4 hours to fully charge but can run on this charge for only a few hours. The battery has thus become a key control parameter in the energy management of portables. To meet the stringent power budget of these devices, researchers have explored various architectural, hardware, software, and system-level optimizations to minimize the energy consumed per useful computation. Research in battery-aware optimization is now moving from stand-alone devices to networks of wireless devices, specifically, ad hoc and distributed sensor networks. Computationally feasible mathematical models are now available that capture battery discharge characteristics in sufficient detail to let designers develop an optimization strategy that extracts maximum charge.

Published in:

Computer  (Volume:36 ,  Issue: 12 )