Cart (Loading....) | Create Account
Close category search window
 

Leakage current: Moore's law meets static power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

Off-state leakage is static power, current that leaks through transistors even when they are turned off. The other source of power dissipation in today's microprocessors, dynamic power, arises from the repeated capacitance charge and discharge on the output of the hundreds of millions of gates in today's chips. Until recently, only dynamic power has been a significant source of power consumption, and Moore's law helped control it. However, power consumption has now become a primary microprocessor design constraint; one that researchers in both industry and academia will struggle to overcome in the next few years. Microprocessor design has traditionally focused on dynamic power consumption as a limiting factor in system integration. As feature sizes shrink below 0.1 micron, static power is posing new low-power design challenges.

Published in:

Computer  (Volume:36 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.