By Topic

Pulse intense metal-ion diode with a vacuum arc plasma anode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nakagawa, Y. ; Dept. of Electr. Eng., Osaka City Univ., Osaka, Japan

An intense pulsed ion beam of metal was extracted from a magnetically insulated ion diode operated in a mode of plasma prefill generated from a vacuum arc discharge, anode plasma source. With this ion diode, an intense metal-ion beam of a high melting-point metal (Ta) was obtained. A variety of operational modes appeared, depending on the amount of plasma in the diode gap at the initiation of the high-voltage pulse. The energy, current, and duration time of the ion beam were 20~100 keV, ~1 kA, and 1 μs, respectively. Measurements of ions were performed with an ion energy analyzer or a biased ion collector located at the end of a long drift tube and a Thomson parabola ion spectrometer. The Ta ions in the first to fifth states of ionization were detected accompanied by C+, O+, F+, and H+ . A Ta ion beam current of about half the total ion flux was obtained in this experiment

Published in:

Plasma Science, IEEE Transactions on  (Volume:19 ,  Issue: 6 )