By Topic

Theoretical analysis of diffused quantum-well lasers and optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. C. H. Choy ; Fujitsu Compound Semicond. Inc., San Jose, CA, USA ; K. S. Chan

Diffused quantum-well (QW) distributed feedback (DFB) lasers and optical amplifiers will be theoretically analyzed in this paper. For DFB lasers, a design rule will be proposed and the validity of the design rule will be discussed with respect to changes in the injected carrier density. The range of grating period, which can be used in the design, is discussed. As a consequence, the maximum tuning range of the emission wavelength can be estimated without involving the time-consuming self-consistent simulation. The features of polarization independence of optical amplifiers achieved by using diffused QWs are also discussed. Our theoretical results successfully explain why polarization independence can achieve in the long-wavelength tail of the modal gain and absorption coefficient but not at photon energies above the transition edge. This explanation applies to other tensile-strained QWs for polarization-independent applications. The understanding is crucial for optimizing polarization-independent devices. To conclude, our analysis of the diffused QW optical devices demonstrates that QW intermixing technology is a practical candidate for not only realizing monolithic photonic integrated circuit, but also enhancing optical device performance.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:9 ,  Issue: 3 )