By Topic

Optical frequency combs: from frequency metrology to optical phase control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ye, J. ; Univ. of Colorado, Boulder, CO, USA ; Schnatz, H. ; Hollberg, L.W.

The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible and near-infrared frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of a "femtosecond optical-frequency comb generator" with a regular comb of sharp lines with well-defined frequencies. For a comb with sufficiently broad bandwidth, it is now straightforward to determine the absolute frequencies of all of the comb lines. This ability has revolutionized optical-frequency metrology, synthesis, and optical atomic clocks. Precision femtosecond optical-frequency combs also have a major impact on time-domain applications, including carrier-envelope phase stabilization, synthesis of a single pulse from two independent lasers, nonlinear spectroscopy, and passive amplifiers based on empty external optical cavities. The authors first review the frequency-domain description of a mode-locked laser and the connection between the carrier-envelope phase and the frequency spectrum to provide a basis for understanding how the absolute frequencies can be determined and controlled. Using this understanding, applications in optical-frequency metrology and synthesis and optical atomic clocks are discussed. This is followed by discussions of time-domain experiments.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:9 ,  Issue: 4 )