By Topic

Highly phase stable mode-locked lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fortier, T.M. ; Univ. of Colorado, Boulder, CO, USA ; Jones, D.J. ; Ye, J. ; Cundiff, S.T.

The authors report on stabilizing the carrier-envelope phase of mode-locked Ti:sapphire lasers. Optimization of the construction of the lasers for ease of phase stabilization is discussed. Results demonstrating long-term phase coherence of the generated pulse train are presented, yielding a phase coherence time of at least 326 s, measurement time limited. The conversion of amplitude noise to phase noise in the microstructured fiber, which is used to obtain an octave spanning spectrum, is measured. The resulting phase noise is found to be sufficiently small so as to not corrupt the phase stabilization. Shift of carrier-envelope phase external to the laser cavity due to propagation through a dispersive material is measured.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:9 ,  Issue: 4 )