By Topic

Interactive view-dependent rendering with conservative occlusion culling in complex environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung-Eui Yoon ; North Carolina Univ., Chapel Hill, NC, USA ; B. Salomon ; D. Manocha

This paper presents an algorithm combining view-dependent rendering and conservative occlusion culling for interactive display of complex environments. A vertex hierarchy of the entire scene is decomposed into a cluster hierarchy through a novel clustering and partitioning algorithm. The cluster hierarchy is then used for view-frustum and occlusion culling. Using hardware accelerated occlusion queries and frame-to-frame coherence, a potentially visible set of clusters is computed. An active vertex front and face list is computed from the visible clusters and rendered using vertex arrays. The integrated algorithm has been implemented on a Pentium IV PC with a NVIDIA GeForce 4 graphics card and applied in two complex environments composed of millions of triangles. The resulting system can render these environments at interactive rates with little loss in image quality and minimal popping artifacts.

Published in:

Visualization, 2003. VIS 2003. IEEE

Date of Conference:

24-24 Oct. 2003