By Topic

Classification of Web documents using a naive Bayes method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Wang ; Dept. of Comput. Sci. & Eng., Mississippi State Univ., USA ; Hodges, J. ; Bo Tang

This paper presents an automatic document classification system, WebDoc, which classifies Web documents according to the Library of Congress classification scheme. WebDoc constructs a knowledge base from the training data and then classifies the documents based on information in the knowledge base. One of the classification algorithms used in WebDoc is based on Bayes' theorem from probability theory. This paper focuses upon three aspects of this approach: different event models for the naive Bayes method, different probability smoothing methods, and different feature selection methods. In this paper, we report the performance of each method in terms of recall, precision, and F-measures. Experimental results show that the WebDoc system can classify Web documents effectively and efficiently.

Published in:

Tools with Artificial Intelligence, 2003. Proceedings. 15th IEEE International Conference on

Date of Conference:

3-5 Nov. 2003