By Topic

Integrating microarray data by consensus clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Filkov, V. ; Dept. of Comput. Sci., California Univ., Davis, CA, USA ; Skiena, S.

With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. In this paper we propose a general method for integrating heterogeneous data sets based on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a consensus set-partition which is as close as possible to all of them. We develop a general criterion to assess the potential benefit of integrating multiple heterogeneous data sets, i.e. whether the integrated data is more informative than the individual data sets. We apply our methods on two popular sets of microarray data yielding gene classifications of potentially greater interest than could be derived from the analysis of each individual data set.

Published in:

Tools with Artificial Intelligence, 2003. Proceedings. 15th IEEE International Conference on

Date of Conference:

3-5 Nov. 2003