By Topic

Designing probabilistic state estimators for autonomous robot control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Schmitt ; Inst. fur Inf., Technische Univ. Munchen, Germany ; M. Beetz

This paper sketches and discusses design options for complex probabilistic state estimators and investigates their interactions and their impact on performance. We consider, as an example, the estimation of game states in autonomous robot soccer. We show that many factors other than the choice of algorithms determine the performance of the estimation systems. We propose empirical investigations and learning as necessary tools for the development of successful state estimation systems.

Published in:

Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on  (Volume:4 )

Date of Conference:

27-31 Oct. 2003