Cart (Loading....) | Create Account
Close category search window

Stable transport of assemblies: pushing stacked parts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bernheisel, J.D. ; Dept. of Mech. Eng., Northwestern Univ., Evanston, IL, USA ; Lynch, K.M.

This paper presents a method to determine stable pushing motions for a planar stack of polygonal parts. The approach consists of solving a series of subproblems where each part in the stack is pushing the parts ahead of it. The solutions to these subproblems are sets of stable motions, and their intersection is the set of stable motions for the entire stack. The motion of multiple parts depends on the exact locations of the centers of mass and the relative masses of the parts. If either or both of these is unknown, it is still possible to calculate a conservative set of motions guaranteed to be stable by using a center of mass uncertainty region.

Published in:

Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on  (Volume:4 )

Date of Conference:

27-31 Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.