By Topic

Modeling acoustic transitions in speech by state-interpolation hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li Deng ; INRS-Telecommun., Montreal, Que., Canada ; Kenny, P. ; Lennig, M. ; Mermelstein, P.

The authors present a new type of hidden Markov model (HMM) for vowel-to-consonant (VC) and consonant-to-vowel (CV) transitions based on the locus theory of speech perception. The parameters of the model can be trained automatically using the Baum-Welch algorithm and the training procedure does not require that instances of all possible CV and VC pairs be present. When incorporated into an isolated word recognizer with a 75000 word vocabulary it leads to the modest improvement in recognition rates. The authors give recognition results for the state interpolation HMM and compare them to those obtained by standard context-independent HMMs and generalized triphone models

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 2 )