By Topic

High-speed experiments on a QFP-based comparator for ADCs with 18-GHz sample rate and 5-GHz input frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harada, Y. ; Res. Dev. Corp. of Japan, Tokyo, Japan ; Green, J.B.

The authors report on the high-speed operation of a superconducting comparator circuit, based on coupling the quantum flux parametron (QFP) to an RF SQUID, which can be used to build a flash-type analog-to-digital converter (ADC). Simulations of this circuit show that it is expected to achieve operation with input signal bandwidths greater than 4 GHz and with a dynamic range equal to at least 4 b of resolution. A QFP-based comparator fabricated with a process using NbN/Pb-alloy Josephson junctions of 5 mu m by 5 mu m and a current density of 100 A/cm/sup 2/ has been examined to evaluate the properties of the QFP-ADC. Analog-to-digital conversion of the comparator has been observed with a QFP activation frequency up to 18.2 GHz. By employing a sampling method, input signals with frequencies up to 5.4 GHz have also been digitized.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:2 ,  Issue: 1 )