Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ying Zhang ; Palo Alto Res. Center, CA, USA ; Yim, M. ; Eldershaw, C. ; Duff, D.
more authors

Modular reconfigurable robots have the potential for great versatility and robustness; however, programming locomotion gaits for hundreds of modules remains a challenge. In this paper we present a formal model for programming locomotion gaits in chain-type modular robots: phase automata. A phase automation is an event-driven state automation with an initial phase delay. The phase delay is normally a real value between 0 and 1. Phase automata are compact representation of locomotion gaits and capable of being embedded and distributed across modules. The concepts of phase automata have been implemented on both PCs and embedded micro-processors. An XML script language and programming interface for phase automata are being built. Locomotion gaits programmed using phase automata have been tested both in simulation with 100+ modules and in hardware with 50+ modules.

Published in:

Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on  (Volume:3 )

Date of Conference:

27-31 Oct. 2003