By Topic

Extending integrated-circuit yield-models to estimate early-life reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. S. Barnett ; IBM Microelectron., Essex Junction, VT, USA ; A. D. Singh ; V. P. Nelson

The integrated yield-reliability model for integrated circuits allows one to estimate the yield, following both wafer probe and burn-in testing. The model is based on the long observed clustering of defects and the experimentally verified relation between defects causing wafer probe failures, and defects causing infant mortality failures. The 2-parameter negative binomial distribution is used to describe the distribution of defects over a semiconductor wafer. The clustering parameter α, while known to play a key role in accurately determining wafer probe yields, is shown, for the first time, to play a similar role in determining burn-in fall-out. Numerical results indicate that the number of infant mortality failures predicted by the clustering model can differ appreciably from calculations that ignore clustering. This is particularly apparent when wafer probe yields are low, and clustering is high.

Published in:

IEEE Transactions on Reliability  (Volume:52 ,  Issue: 3 )