Cart (Loading....) | Create Account
Close category search window
 

Model-based tracking of laboratory animals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kalafatic, Z. ; Electr. Eng. & Comput. Fac., Zagreb Univ., Croatia

We present a system for tracking laboratory animals during pharmacological experiments. As it is usually possible to ensure good contrast between the animals and the background, tracking of a single animal or several physically separated animals can be achieved by relatively simple algorithms. The main problem arises when we try to track several almost identical, uniformly coloured animals during their contacts. To deal with this problem we represent objects by parametrically deformable contour models. The model has been built by observing videos containing a single animal (a laboratory mouse). To reflect symmetry, the model is axial and contains the offsets of the contour segments from the axis of minimal inertia. The deformation is modeled as stretching and bending. The tracking is done in two steps. For the tracking of objects from frame to frame we use the rigidity assumption, i.e. in the first step the contour models which represent objects in the previous frame are translated into new positions. In the second step the object position, rotation and scale, as well as the deformation parameters, are fine-tuned to match the object boundaries. The interframe translation is estimated by minimizing the sum of squared differences (SDD) over the search window for all tracked contour points. The model fitting is based on maximizing the contour energy in terms of the underlying smoothed gradient image. The robustness of the tracking algorithm is improved by adding a supervision module, which detects tracking failures and reinitializes the contours that lose their targets. The system has been tested on real sequences with laboratory animals during pharmacological experiments and has been shown to be robust and efficient. Future extensions will include expert knowledge of biomedical and pharmacological experts. The major goal is to build a system that will provide a tool for objective evaluation of animal behaviour during experiments.

Published in:

EUROCON 2003. Computer as a Tool. The IEEE Region 8  (Volume:2 )

Date of Conference:

22-24 Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.