We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

The usage of wavelet packet transformation in automatic noisy speech recognition systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kotnik, B. ; Electr. Eng. & Comput. Sci. Fac., Maribor Univ., Slovenia ; Kacic, Z. ; Horvat, B.

In this paper a noise robust speech feature extraction algorithm using wavelet packet decomposition (WPD) of the speech signal is presented. In contrast to the time-frequency signal representation based on short-time Fourier transform (STFT), a computational efficient WPD can lead to good representation of stationary (vowel phonemes) as well as non-stationary (consonants) segments of the speech signal. In the proposed WPD scheme a novel wavelet function is developed and presented. The noise robustness is improved with the application of proposed wavelet based denoising algorithm with the modified soft thresholding procedure. For decorrelation of feature vector elements and dimensionality reduction of final feature vector a principal component analysis (PCA) is used. Automatic speech recognition results on Aurora 3 database show performance improvement when compared to the standardized mel-frequency cepstral coefficients (MFCC) feature extraction algorithm.

Published in:

EUROCON 2003. Computer as a Tool. The IEEE Region 8  (Volume:2 )

Date of Conference:

22-24 Sept. 2003