By Topic

Induced-current electrical impedance tomography: a 2-D theoretical Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zlochiver, S. ; Biomed. Eng. Dept., Tel-Aviv Univ., Israel ; Rosenfeld, M. ; Abboud, S.

A reconstruction algorithm, based on the modified Newton-Raphson algorithm, was developed for induced-current electrical impedance tomography and studied in theoretical two-dimensional geometry representing a human thorax. The finite-volume method was applied for the discretization of the physical domain, resulting in a symbolic representation of the Jacobian matrix, which is accurate and fast to construct. Several system configurations, differing in the number of excitation coils and electrodes, were simulated, and the performance in thoracic imaging was studied. It was found that a six-coil system shows a significant 40% improvement of conductivity values reconstruction over the three-coil system (an error of 2.06 Ω-1 compared with 3.44 Ω-1). A number of 32 electrodes was found to be sufficient, being the smallest number of electrodes to still provide a reasonable performance (only 4.2% degradation in average conductivity error compared with the maximum possible 106-electrode system).

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 12 )