By Topic

Efficient power management in real-time embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Zuquim, A.L.A.P. ; Dept. of Comput. Sci., Univ. Fed. de Minas Gerais, Belo Horizonte, Brazil ; Vieira, L.F.M. ; Vieira, M.A. ; Vieira, A.B.
more authors

Power consumption became a crucial problem in the development of mobile devices, especially those that are communication intensive. In these devices, it is imperative to reduce the power consumption devoted to maintaining a communication link during data transmission/reception. The application of dynamic power management methodologies has contributed to the reduction of power consumption in general purpose computer systems. However, to further reduce power consumption in communication intensive real-time embedded devices, we have to consider the state of the computation and external events in addition to power management policies. In this paper we propose a model of an Extended Power State Machine (EPSM), where we adapt a Power State Machine to include the state of an embedded program in the power state machine formulation. This EPSM model is used to adapt the Quality of Service (QoS) in communication intensive devices to ensure low power consumption. In such development, a middleware layer fits in the system's architecture, being responsible for intercepting the data communication and implementing the EPSM. Also, a software tool was developed, allowing the Middleware Code to be generated based on the State Machine. A case study demonstrates the application of the proposed model to a real situation.

Published in:

Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA '03. IEEE Conference  (Volume:1 )

Date of Conference:

16-19 Sept. 2003