By Topic

Middleware infrastructure for parallel and distributed programming models in heterogeneous systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Al-Jaroodi, J. ; Dept. of Comput. Sci. & Eng., Nebraska Univ., Lincoln, NE, USA ; Mohamed, N. ; Jiang, H. ; Swanson, D.

We introduce a middleware infrastructure that provides software services for developing and deploying high-performance parallel programming models and distributed applications on clusters and networked heterogeneous systems. This middleware infrastructure utilizes distributed agents residing on the participating machines and communicating with one another to perform the required functions. An intensive study of the parallel programming models in Java has helped identify the common requirements for a runtime support environment, which we used to define the middleware functionality. A Java-based prototype, based on this architecture, has been developed along with a Java object-passing interface (JOPI) class library. Since this system is written completely in Java, it is portable and allows executing programs in parallel across multiple heterogeneous platforms. With the middleware infrastructure, users need not deal with the mechanisms of deploying and loading user classes on the heterogeneous system. Moreover, details of scheduling, controlling, monitoring, and executing user jobs are hidden, while the management of system resources is made transparent to the user. Such uniform services are essential for facilitating the development and deployment of scalable high-performance Java applications on clusters and heterogeneous systems. An initial deployment of a parallel Java programming model over a heterogeneous, distributed system shows good performance results. In addition, a framework for the agents' startup mechanism and organization is introduced to provide scalable deployment and communication among the agents.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 11 )