System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

A probabilistic method for foreground and shadow segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Wang ; Institute for Infocomm Res., Singapore ; Tan, T. ; Kia-Fock Loe

This paper presents a probabilistic method for foreground segmentation that distinguishes moving objects from their cast shadows in monocular indoor image sequences. The models of background, shadow, and edge information are set up and adaptively updated. A Bayesian framework is proposed to describe the relationships among the segmentation label, background, intensity, and edge information. A Markov random field is used to boost the spatial connectivity of the segmented regions. The solution is obtained by maximizing the posterior probability density of the segmentation field.

Published in:

Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on  (Volume:3 )

Date of Conference:

14-17 Sept. 2003