Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Adaptive Wiener filtering of noisy images and image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Jin, F. ; Dept. of Syst. Design Eng., Waterloo Univ., Ont., Canada ; Fieguth, P. ; Winger, L. ; Jernigan, E.

In this work, we consider the adaptive Wiener filtering of noisy images and image sequences. We begin by using an adaptive weighted averaging (AWA) approach to estimate the second-order statistics required by the Wiener filter. Experimentally, the resulting Wiener filter is improved by about 1 dB in the sense of peak-to-peak SNR (PSNR). Also, the subjective improvement is significant in that the annoying boundary noise, common with the traditional Wiener filter, has been greatly suppressed. The second, and more substantial, part of this paper extends the AWA concept to the wavelet domain. The proposed AWA wavelet Wiener filter is superior to the traditional wavelet Wiener filter by about 0.5 dB (PSNR). Furthermore, an interesting method to effectively combine the denoising results from both wavelet and spatial domains is shown and discussed. Our experimental results outperform or are comparable to state-of-art methods.

Published in:

Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on  (Volume:3 )

Date of Conference:

14-17 Sept. 2003