Cart (Loading....) | Create Account
Close category search window
 

Cross-layer adaptive video coding to reduce energy on general-purpose processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sachs, D.G. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; Adve, S.V. ; Jones, D.L.

Traditionally, video encoders have been designed assuming that the more redundancy is removed, the better the encoder. However, on current laptops, reducing the compression efficiency of the video encoder by reducing the number of instructions used to perform compression can actually reduce the total energy used to encode and transmit a sequence. The correct balance between computation and compression efficiency may change dynamically, motivating adaptive encoders. At the same time, recent general-purpose processors also employ energy-driven adaptations. For best gains, the adaptations in the hardware and application layers must be coordinated. From a system design viewpoint, this coordination must happen through minimal, well-defined interfaces. This paper develops (1) an adaptive video encoder for general-purpose processors that trades computational complexity for compression efficiency to minimize total system energy, and (2) a method for determining the best configuration for such an encoder when running on a processor that is also adaptive. Our adaptive processor employs recent energy saving techniques of dynamic voltage and frequency scaling and architectural adaptation. Using a detailed simulator, we show that our cross-layer adaptive application algorithm reduces energy significantly, when employed on a fixed or adaptive processor.

Published in:

Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on  (Volume:3 )

Date of Conference:

14-17 Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.