Cart (Loading....) | Create Account
Close category search window
 

Unsupervised texture segmentation using multiresolution hybrid genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang-Tsun Li ; Dept. of Comput. Sci., Warwick Univ., Coventry, UK ; Chiao, R.

This work approaches the texture segmentation problem by incorporating genetic algorithm and k-mean clustering method within a multiresolution structure. First, a quad-tree structure is constructed and the input image is partition into blocks at different resolution levels. Texture features are then extracted from each block. Based on the texture features, a hybrid genetic algorithm is employed to perform the segmentation. The crossover operator of traditional genetic algorithm is replaced with k-means clustering method while the mutate and select operators are adopted. In the final step, the boundaries and the segmentation result of the current resolution level are propagated down to the next level to act as contextual constraints and the initial configuration of the next level, respectively.

Published in:

Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on  (Volume:2 )

Date of Conference:

14-17 Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.