By Topic

Variable-rate data sampling for low-power microsystems using modified Adams methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Irvine, G.B. ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; Lei Wang ; Dickman, P. ; Cumming, D.R.S.

A method for variable-rate data sampling is proposed for the purpose of low-power data acquisition in a small footprint microsystem. The procedure enables energy saving by utilizing dynamic power management techniques and is based on the Adams-Bashforth and Adams-Moulton multistep predictor-corrector methods for ordinary differential equations. Newton-Gregory backward difference interpolation formulae and past value substitution are used to facilitate sample rate changes. It is necessary to store only 2m+1 equispaced past values of t and the corresponding values of y, where y=g(t), and m is the number of steps in the Adams methods. For the purposes of demonstrating the technique, fourth-order methods are used, but it is possible to use higher orders to improve accuracy if required.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 12 )