By Topic

Robust Gaussian and non-Gaussian matched subspace detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Desai, M.N. ; C. S. Draper Lab., Cambridge, MA, USA ; Mangoubi, R.S.

We address the problem of matched filter and subspace detection in the presence of arbitrary noise and interference or interfering signals that may lie in an arbitrary unknown subspace of the measurement space. A minmax methodology developed to deal with this uncertainty can also be adapted to situations where partial information on the interference or other uncertainties is available. This methodology leads to a hypothesis test with adequate levels of false alarm robustness and signal detection sensitivity. The robust test is applicable to a large class of noise density functions. In addition, generalized likelihood ratio (GLR) detectors are derived for the class of generalized Gaussian noise. The detectors are generalizations of the χ2, t, and F statistics used with Gaussian noise, which are themselves motivated in a new way by the robust test. For matched filter detection, these expressions are simpler and computationally efficient. The robust test reduces to the conventional test when unlearned subspace interference is known to be absent. The results demonstrate that when compared with the conventional detector, the robust one trades off some detection performance in the absence of interference for the sake of robustness in its presence.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 12 )