By Topic

Quantization of multiaspect scattering data: target classification and pose estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong, Yanting ; Guidant Corp., St. Paul, MN, USA ; Carin, L.

In many sensing scenarios, the observed scattered waveforms must be quantized for subsequent transmission over a communication channel. Rate-distortion theory plays an important role in defining the bit rate required to achieve a desired distortion. The distortion is typically defined in the context of signal reconstruction, with the goal of achieving high-fidelity synthesis of the compressed data. For sensing applications, however, the objective is often not simply signal reconstruction but classification performance as well. Other related metrics include target-pose estimation. We consider multiaspect wave scattering, in which classification and pose estimation are performed based on the quantized scattering data. Moreover, rate-distortion theory is employed to place bounds on pose-estimation performance when both the target identity and pose are unknown a priori. It is demonstrated that block-coding with Bayes-VQ may yield performance approaching the bound. Example results are presented for measured acoustic waveforms scattered from underwater elastic targets.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 12 )