By Topic

Limited-trial Chase decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arico, G. ; Cascina Costa di Samarate, AgustaWestland, Varese, Italy ; Weber, J.H.

Chase decoders permit flexible use of reliability information in algebraic decoding algorithms for error-correcting block codes of Hamming distance d. The least complex version of the original Chase algorithms uses roughly d/2 trials of a conventional binary decoder, after which the best decoding result is selected as the final output. On certain channels, this approach achieves asymptotically the same performance as maximum-likelihood (ML) decoding. In this correspondence, the performance of Chase-like decoders with even less trials is studied. Most strikingly, it turns out that asymptotically optimal performance can be achieved by a version which uses only about d/4 trials.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 11 )