Cart (Loading....) | Create Account
Close category search window
 

Frequency-coded waveforms for enhanced delay-Doppler resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chieh-Fu Chang ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; Bell, M.R.

In this paper, we propose techniques for the construction of frequency-coding sequences that give rise to frequency-coded waveforms having ambiguity functions with a clear area - containing no sidelobes - in a connected region surrounding the main lobe. These constructed sequences are called pushing sequences. First, two important properties of pushing sequences are investigated: the group D4 dihedral symmetry property and the frequency omission property. Using the group D4 dihedral symmetry property, we show how to construct additional pushing sequences from a given pushing sequence. Using the frequency omission property, we show how to construct pushing sequences of any length N and design proper frequency-coded waveforms that meet specific constraints in the frequency domain. Next, we use the Lempel T4 construction of Costas sequences to construct pushing sequences with power 1. Finally, we show how to construct pushing sequences with any desired power using Lee codewords. Because these arbitrary-power pushing sequences constructed using Lee codewords do not have the Costas property, we derive expressions for the pattern of hits in the geometric array. Based on this, the general form of the positions and levels of all the sidelobe peaks are derived.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 11 )

Date of Publication:

Nov. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.