By Topic

Transmit diversity over quasi-static fading channels using multiple antennas and random signal mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yingxue Li ; Electr. Eng. Dept., Texas A&M Univ., College Station, TX, USA ; Georghiades, C.N. ; Huang, G.

We introduce a scheme that achieves a diversity gain for coded systems under static fading conditions by using multiple antennas and random signal mapping. In a two-antenna system, the bit-error rate performance of the proposed scheme approaches that of Alamouti's scheme when the channel is perfectly known. In the presence of channel mismatch, the proposed scheme outperforms Alamouti's scheme significantly. It is shown that, as the number of transmit antennas N goes to infinity, the effective channel for the introduced scheme behaves as if it were perfectly interleaved (i.e., as if the fading was independent). When N is small, further performance gain can be achieved by expanding the original signal constellation.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 11 )