By Topic

Stability of microcrystalline silicon for thin film solar cell applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The development of microcrystalline silicon (μc-Si:H) for solar cells has made good progress with efficiencies better than those of amorphous silicon (a-Si:H) devices. Of particular interest is the absence of light-induced degradation in highly crystalline μc-Si:H. However, the highest efficiencies are obtained with material which may still include a-Si:H regions and light-induced changes may be expected in such material. On the other hand, material of high crystallinity is susceptible to in-diffusion of atmospheric gases which, through adsorption or oxidation, affect the electronic transport. Investigations are presented of such effects concerning the stability of μc-Si:H films and solar cells prepared by plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition

Published in:

IEE Proceedings - Circuits, Devices and Systems  (Volume:150 ,  Issue: 4 )