By Topic

New materials and processes for flat panel X-ray detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Flat panel X-ray imagers using amorphous silicon active matrix addressing have been introduced to the medical imaging market at sizes up to 40×40 cm and with up to 10 million pixels. Some new technology developments, which can further increase the performance of these devices, are described. High atomic number polycrystalline X-ray photoconductors can operate near the theoretical sensitivity and at reasonably low bias voltages. The higher sensitivity obtained in HgI2 allows single-photon detection, which opens up new imaging opportunities. Another approach to improve sensitivity is to integrate an amplifier at the pixel level, which requires laser-recrystallised polysilicon transistors. A pixel-level source follower amplifier is shown to have enough gain to overcome other noise sources. A three-dimensional device structure is needed to accommodate the pixel electronics, and so the sensor is deposited on top of the electronics, separated by a thick passivation layer. Future possible detector technologies based on printing and organic semiconductors are discussed

Published in:

IEE Proceedings - Circuits, Devices and Systems  (Volume:150 ,  Issue: 4 )