Cart (Loading....) | Create Account
Close category search window

Representation method for a set of documents from the viewpoint of Bayesian statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goto, M. ; Fac. of Environ. & Information Studies, Musashi Inst. of Technol., Japan ; Ishida, T. ; Hirasawa, S.

In this paper, we consider the Bayesian approach for representation of a set of documents. In the field of representation of a set of documents, many previous models, such as the latent semantic analysis (LSA), the probabilistic latent semantic analysis (PLSA), the semantic aggregate model (SAM), the Bayesian latent semantic analysis (BLSA), and so on, were proposed. In this paper, we formulate the Bayes optimal solutions for estimation of parameters and selection of the dimension of the hidden latent class in these models and analyze it's asymptotic properties.

Published in:

Systems, Man and Cybernetics, 2003. IEEE International Conference on  (Volume:5 )

Date of Conference:

5-8 Oct. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.